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Abstract
In the literature electron spin resonance (ESR) has been extensively studied to generate pure
spin current without a charge current. In this work we address possible charge pumping by ESR
in real space. Using the Keldysh formalism, we present a general charge and spin pumping
result induced by rotating magnetic fields applied on a two-terminal device. It was found that
when the spatial inversion symmetry of the system is broken, a nonzero charge current can flow
in the system besides the spin current. At low frequency, the charge current has a quadratic
frequency dependence while the spin current is linear with frequency. In the adiabatic limit, the
charge current due to the breaking of spatial symmetry vanishes but the pure spin current still
exists. Static disorder can greatly suppress both the pumped charge and the spin current.

Spintronics has been one of the most active research fields
in recent years and aims to exploit the charge and spin
degrees of freedom of electrons in spin devices, which it is
hoped will be the new generation of electronic devices. The
realization of quantum computation and quantum information
precessing with the spin degree of freedom is another
ambitious goal of spintronics [1–3]. The first challenge
in this field is how to efficiently inject or generate spin
current in nonmagnetic semiconductors. Although the
definition of spin current is currently controversial [4, 5],
especially for spin–orbit coupled systems, various schemes
for generating pure spin current [6–21] have been proposed
using magnetic and/or electric means, and they are believed
to offer new avenues in spintronics to achieve efficient spin
injection. The main methods include the spin battery based
on ferromagnetic resonance [6, 7], optical injection [8, 9],
magnon excitation [10, 11], equilibrium spin current [12, 13],
the spin Hall effect [14, 15] etc, among which the spin pump
mechanism is of great importance and has attracted a great deal
of attention among researchers [16–21]. Many authors have
suggested that electron spin resonance (ESR) in a quantum dot
system [18–21] at zero bias can lead to a pure spin current
without any charge current. The degenerate energy levels in the
dot are first spin-split by a static longitudinal magnetic field,
and then a transverse rotating magnetic field (RMF) is applied
at the resonant frequency coupling two Zeeman split levels and
making a spin flip transition between them. When the chemical
potential of the lead locates between the two spin-split levels

of the quantum dot, one type of spin (say the up spin) will flow
spontaneously into the lower level of the QD from the lead,
then the transverse rotating field can pump it into the higher
level with the spin flipped, and in turn the down spin will flow
out from the dot, so that a pure spin current is pumped out from
the dot without external bias.

ESR can generally be used to produce a pure spin current
as mentioned above; however, whether it can pump a charge
current or not has not been discussed yet, even though a
parametric quantum pump has been extensively discussed in
the literature [22, 23]. In this paper we study charge pumping
by ESR in real space by using the Keldysh formalism [24].
As is well known, the parametric quantum pump is a device
that generates a flow of electrons by cyclic variation of system
parameters. Therefore, for generality, we model in this work
two or more out-of-phase RMFs applied to a two-terminal
device with all the leads in equilibrium. At finite frequency,
we present the general results for the pumped spin and charge
currents in the bilinear regime. The electron and hole flow
correspond, respectively, to two spin-resolved charge currents.
It was found that a single RMF can give rise to not only a
spin current but also a nonzero charge current when the spatial
inversion symmetry of the system is broken; the charge current
has a quadratic frequency dependence while the spin current is
linear in frequency. We also studied the static disorder effect on
the pumped current: contrary to the finding in [25] that disorder
can enhance the spin current, we found that both the pumped
spin and charge currents are suppressed greatly by disorder.
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Figure 1. The pumped charge current IL (a) and spin current JL (b)
as a function of the X coordinate of the RMF. The scattering region
is a X × Y = 15 × 15 lattice, and the black rectangle, triangle, and
circle lines are for Y = 6, 7 and 8, respectively. The inset in (a) is a
two-terminal device with two RMFs applied on the scattering region.
� = ω = 0.02t , Uα = 0.8t I with I the unit matrix; other parameters
are in the text.

We start with a schematic two-terminal device shown in
the inset of figure 1, where two ideal leads in equilibrium are
connected to the scattering region of a noninteracting electron
gas, the leads are spin-degenerate and the scattering region
may have static magnetic or nonmagnetic disorders. Besides
the longitudinal magnetic field (Bzẑ), two transverse rotating
magnetic fields B(t) = Brf(cos ωt x̂ + sin ωt ŷ) are applied
on the device at different positions. These two pumping fields
have the same rotation frequency but they may be out of phase.
At resonance, the frequency ω is nearly equal to the Zeeman
energy � = μBgBz by the longitudinal field with the Bohr
magneton μB and the effective electron g factor g. The device
is described by a tight binding Hamiltonian as

H =
∑

rσ

(2dt + εrσ )c†
rσ crσ − t

∑

raσ

(c†
r+aσ crσ + c.c.)

+
∑

σ,i=A,B

(
�i

2
σc†

rσ crσ + Ri c
†
rσ crσ̄ eiσ (ωt+φi )

)
, (1)

where crσ (c†
rσ ) is the annihilation (creation) operator of

electron at position r with spin σ , σ = ±,↑↓, σ̄ = −σ , t
is the hopping energy and εrσ is the on-site energy, a is the
lattice size, i = A, B represent the two pumping points that
may locate at any place in the scattering region, φi is the initial
phase. Ri = gμB Brf/2 is the ESR Rabi frequency. The first
two terms in equation (1) denote the free electron Hamiltonian
of the scattering region and a hard-wall potential is used in the
finite size system; the last term denotes the Zeeman energy
from the magnetic fields. The Hamiltonian of the lead is not
shown here for it is an ideal one. The model employed here
can be d = 1, 2 or 3 dimensional and the scattering region can
be spatially regular or irregular.

Now we derive a general expression of the averaged spin
resolved charge current flowing in lead α = L, R. The spin-
dependent current operator is given by iασ = −edNασ /dt

where Nασ is the electron number operator in lead α with spin
σ . According to the Heisenberg equation, the averaged current
is written as

Iασ (t) = 〈iασ (t)〉 = e

h̄
Tr[UαG<

rσ,ασ (t, t) − G<
ασ,rσ (t, t)U+

α ].
(2)

Here Uα is the coupling strength between lead α and the
scattering region r , which is a spin-independent matrix when
the system is two- or three-dimensional. The trace is over the
transverse modes. G<

α,r is the usual lesser Green’s function
defined as [24]

G<
ασ,rσ ′(t, t ′) = i〈c†

rσ ′(t ′)cασ (t)〉, (3)

where 〈· · ·〉 is the quantum statistical average. It is noted that
the Green’s function is a 2Mα × 2Mα matrix for the spin
degeneracy of 2 and Mα transverse modes in lead α. To
solve the equation above, we use the perturbation theory and
consider the RMF with a finite frequency ω as the perturbation.
The following Dyson equation for the Keldysh formalism is
used in the calculation

Gk(t, t ′) = Gk0(t, t ′)+
∫

dt1Gk0(t, t1)V k(t1)Gk0(t1, t ′)+· · · ,
(4)

where Gk(t, t ′) is the Green’s function in Keldysh space, which
is defined as [26, 27]

Gk(t, t ′) =
(

Gt(t, t ′) G<(t, t ′)
G>(t, t ′) Gt̄ (t, t ′)

)
, (5)

where

Gt (t, t ′) = −iθ(t−t ′)〈c(t)c†(t ′)〉+iθ(t ′−t)〈c†(t ′)c(t)〉, (6)

G>(t, t ′) = −i〈c(t)c†(t ′)〉, (7)

and

Gt̄ (t, t ′) = −iθ(t ′− t)〈c(t)c†(t ′)〉+ iθ(t − t ′)〈c†(t ′)c(t)〉 (8)

are the time order, greater and anti-time order Green’s
functions, respectively. The perturbation potential V k in the
Dyson equation is also in the Keldysh space defined as

V k(t) =
(

vi (t) 0
0 −vi (t)

)
. (9)

Here the time order and anti-time order components take
the plus and minus perturbation potential whereas the other
two components are zero because, as in most cases, the
perturbation potential is instantaneous. The four component
Green’s functions of Gk are not fully independent and they
have relations such as

Gt = G< + Gr, (10)

Gt̄ = G< − Ga, (11)

and
G> = Gt − Ga. (12)
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In these expressions, Gr(a) is the usual retarded (advanced)
Green’s function as

Gr(a)(t, t ′) = ∓iθ(±t ∓ t ′)〈{c(t), c+(t ′)}〉, (13)

and they satisfy a similar Dyson equation as Gk in equation (4).
Since the device is unbiased, all the electrodes have the

same chemical potential and the unperturbed terms Gk0 and
Gr0 and the first-order correction �(1)Gk(r) are not expected
to give rise to a charge current. Thus we need to expand
the Dyson equation to the bilinear term, which can lead to a
pumped current, i.e.

�(2)Gk(r) ∼ Gk(r)0V k(r)
i Gk(r)0V k(r)

i Gk(r)0. (14)

The unperturbed Green’s function Gk(r)0 can be easily worked
out since the system is in equilibrium, i.e. Gr0(E) =
1/(E − H0 − 	r ), where H0 is the time-independent
part of equation (1) and 	r = ∑

α U †
α gr

αUα , with gr
α

being the retarded Green’s function of the isolated lead
α. The unperturbed lesser Green’s function is given by
G〈0 = [Ga0(E) − Gr0(E)] f (E), with f (E) being the
Fermi distribution function, thus Gk0 can be calculated using
equations (10)–(12). With these preparations and some
algebra, we obtain the spin-resolved current in lead α as

Iασ = e

h̄

∫
dE

2π

∑

i, j=A,B

ieiσ (φi −φi ) Ri R j

× ( f (E) − f (E + σw)) Tr[�αGr0
ασ,iσ (E)

× (Gr0
i σ̄ , j σ̄ (E + σw) − Ga0

i σ̄ , j σ̄ (E + σw))Ga0
jσ,ασ (E)].

(15)

Here �α = i(	r
α − 	a

α) is the line width function of lead
α that denotes the electron transfer rate, and it is spin-
degenerate. Equation (15) is the main result of this paper,
that the rotating magnetic field can give rise to not only a
steady spin current Jα = Iα↑ − Iα↓ but also a charge current
Iα = Iα↑ + Iα↓. The formula derived above is similar to
that for the pumped current from the usual spin-independent
pumping potentials obtained by the scattering theory at finite
frequency [28, 29]. For the bilinear approximation, the electron
in one cycle of RMF experiences spin flip twice, so that its
spin is unchanged and a pumped charge current may flow
in the system; this is also the reason that the first-order
correction �(1)Gk(r) does not contribute to the pumped current
as mentioned above. The formation of the pumped current
can be regarded as an excited electron–hole pair [30], due to
the absorption of an energy quantum hω, flowing to different
leads; thus from the equation above, the two spin-resolved
charge currents correspond exactly to the electron and hole
currents, respectively, and the total current is the summation
of them. Using the identity

Ga − Gr = iGr�Ga (16)

with � = ∑
α �α , we can prove that the charge current is

conserved: ∑

ασ

Iασ = 0. (17)

Figure 2. The frequency dependence of the pumped current IL (a)
and JL (b). The coordinates of the RMF are taken as X = 7 and
Y = 6, 7, 8. Parameters are the same as those in figure 1.

However, the spin current is not conserved,
∑

α Jα 	= 0,
because the RMF can be regarded as a source of spin, in other
words, the RMF can also give rise to a pure spin current in a
single-terminal device.

We focus on the case of a single RMF applied on a two-
terminal device. Figure 1 presents the pumped charge IL and
spin current JL through the left lead as a function of the RMF
position in the device. The scattering region is described by
a 15 × 15 two-dimensional lattice. In the calculation, the
hopping energy t is taken as the energy unit. The Fermi energy
E f = 0.4t so that the Fermi wavevector is much larger than
the lattice constant a and our model can simulate a continuum
system. The Rabi frequency is not explicitly considered in the
calculations since the presented results are linear with it, which
can be seen from equation (15). In figure 1(a), it is shown
that a nonzero pumped charge current exists in the system
besides the spin current (figure 1(b)), and this charge current
possesses the spatial inversion antisymmetry I (r) = −I (−r),
so that it will disappear when the pumping point locates at the
center of the device. In other words, if the pumping system
composed of the device and the pumping point has spatial
inversion symmetry (SIS) [28], no pumped charge current
could form. When ESR is considered in a single-level quantum
dot system which naturally has SIS, no charge current can
flow [18–21]. The pumped spin current in figure 1(b) does
not exhibit any symmetry because the spin current is not
conserved.

Figure 2 shows IL and JL versus the pumping frequency ω.
The charge current exhibits a quadratic frequency dependence
while the spin current is linear in ω. In the low frequency limit,
equation (15) could be reduced to the following expression:

Iασ = eσω

h

∑

i, j=A,B

Ri R j ie
iσ (φi−φ j ) Tr[�αGr0

ασ,iσ

× (Gr0
i σ̄ , j σ̄ − Ga0

i σ̄ , j σ̄ )Ga0
jσ,ασ ]E=E f
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Figure 3. The pumped charge current IL (a) and spin current JL (b)
as a function of the disorder strength W for different frequencies. In
calculation, the sample average on disorder is taken over 2000
random configurations. The RMF locates at X = 7 and Y = 8 except
for the ‘circle’ line with X = 8, Y = 8, the center of lattice. The
Zeeman energy is equal to the frequency of RMF.

+ eω2

h

∑

i, j=A,B

Ri R j ie
iσ (φi−φ j ) Tr

[
�αGr0

ασ,iσ

× ∂

∂ E
(Gr0

i σ̄ , j σ̄ − Ga0
i σ̄ , j σ̄ )Ga0

jσ,ασ

]

E=E f

. (18)

The first term (before the plus sign) is the adiabatic result
and the spin-resolved current is linear in ω, the second term
is nonlinear and proportional to the square of frequency. By
means of equation (16), we can show that the first (adiabatic)
term does not contribute to the charge current (irrespective of
the number of pumping points) but to the pure spin current,
whereas the nonlinear term can result in a nonzero charge
current that has a quadratic frequency dependence, hence the
magnitude of the spin current is much larger than the charge
current (in fact they have different units, but in this work they
are simplified to have the same unit e/h̄). The charge current
induced by ESR is different from the usual quantum parametric
pump, in which the charge current is linear in frequency in the
adiabatic limit. For the case of two out-of-phase RMFs, the
correlation between them can lead to J ∼ cos φ and I ∼
sin φ, with φ being the phase difference between two RMFs;
however, neither of them is larger in magnitude than a single
RMF since the correlation between different pumping points is
weaker than that of the same pumping point in equation (15)
or (17). J ∼ cos φ indicates that a single RMF can lead to a
spin current.

Hattori [25] has demonstrated that the spin current induced
by RMF in the diffusive transport regime can be enhanced by
disorder due to the weak localization effect. In this study,
we also consider the effect of static disorder on both I and
J caused by nonmagnetic impurities. In the calculation, a
random on-site potential εr is introduced, which is uniformly
distributed in the range [−W/2, W/2] with W the disorder

strength. As shown in figure 3, the computed IL (figure 3(a))
and JL (figure 3(b)) decreases greatly with the disorder strength
W . At strong disorder, the pumped charge current can even
change its direction and exhibit a fluctuation around zero,
since it is related to the spatial symmetry. The decreasing
trend of both pumped currents is very different from the
result in [25], where the RMF was considered to apply on
the whole device and there is no charge current flowing
in the system. The circle line in figure 3(b) denotes the
pumped pure spin current in the system that possesses SIS so
that the charge current disappears. The pure spin current is
shown to decrease rapidly with disorder. From the scattering
perspective, the pumped current is due to the time-dependent
potential, which causes inelastic scattering of electrons and
subsequent nonequilibrium in-scattering and out-scattering of
electrons in one lead. This can be seen from the following
transformed version of equation (15):

Iασ = e

h
Tr

∫
dE

∑

β

|�Sαβ(E +σω)|2( f (E)− f (E +σω)),

(19)
where �Sαβ is the first-order correction of the scattering
coefficients [29, 30] by the pumping potentials and β is the lead
index. Since the scattering coefficients decrease apparently
with disorder, the corresponding pumped current I and J in
our scheme should be reduced rapidly as well [31]. The
results found here, ESR leading to a nonzero charge current in
none-SIS device, should be realizable using currently available
technologies. When an RMF is applied on a device, the
charge current can be measured directly by modulating the left
(right) coupling strength Uα between L (R) lead and device,
i.e. changing the line width function �L(R), which can be
actually controlled by an external gate voltage [32].

In summary, we have investigated charge pumping by
rotating magnetic fields in a two-terminal device. We derived
a general formula of the pumped charge and spin current in
real space by means of the Keldysh Green’s function. A
pumped current can flow in the device without external bias
only when the device does not have spatial inversion symmetry,
and it can disappear in the adiabatic limit. The pumped spin
and charge current have, respectively, linear and quadratic
frequency dependence, and both of them can be strongly
reduced by disorder.
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